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Remarks on the Bogoliubov-Valatin transformation
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Abstract. A mistake in the new formulation of the Bogoliubov-Valatin transformation [W.S. Liu, X.P.
Li, Eur. Phys. J. D 2, 1 (1998)] is pointed out and an exact formulation is reconstructed by using the
disentangling technique for matrices.

PACS. 03.65.Ca Quantum mechanics: formalism

Recently we have shown that the usual BCS state is
a kind of squeezed fermion-pair states by making use of
the new formulation of the Bogoliubov-Valatin transfor-
mation (BVT) [1]. However, it is much to be regretted
that we found that there exists an illogical deduction in
this formulation although its occurrence had no effect on
the later conclusion. The purposes of the present paper
are to highlight this mistake and reconstruct the exact
formulation of the BVT.

In what follows we present a brief summary of refer-
ence [1]. Consider the general BVT which mixes the an-
nihilation operators ap↑(a−p↓) and the creation operators

a†p↑(a
†
−p↓) of a pair of fermions with opposite momenta

(p,−p) and antiparallel spins (↑, ↓). It may be written
in a form of unitary transformations for the individual
fermion operators

Upap↑U
†
p = µpap↑ − νpa

†
−p↓,

Upa
†
p↑U

†
p = µ∗pa

†
p↑ − ν

∗
pa−p↓,

Upa−p↓U
†
p = µpa−p↓ + νpa

†
p↑,

Upa
†
−p↓U

†
p = µ∗pa

†
−p↓ + ν∗pap↑, (1)

where Up is a unitary operator, µp and νp are complex
transformation coefficients satisfying the relation:

|µp|
2 + |νp|

2 = 1 . (2)

If we assume that all Up, µp, and νp are functions of a cer-
tain real parameter x, after tedious calculation we obtain

∂Up

∂x
U†p = ζ∗p(x)Kp+ − ζp(x)Kp− − 2κp(x)Kp0, (3)

where

ζp(x) = µp
∂ν∗p

∂x
− ν∗p

∂µp

∂x
,

κp(x) = µ∗p
∂µp

∂x
+ νp

∂ν∗p

∂x
= −κ∗p(x), (4)
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and

Kp+ = a†p↑a
†
−p↓, Kp− = a−p↓ap↑,

Kp0 =
1

2
(a†p↑ap↑ + a†−p↓a−p↓ − 1). (5)

is a two-mode realization of the SU(2) Lie algebra, which
satisfies the commutation relation

[Kp−,Kp+] = −2Kp0, [Kp0,Kp±] = ±Kp±. (6)

Since the right-hand side of equation (3) includes a com-
plicated algebra of operators, which do not commute with
one another, it is incorrect that the solution of the uni-
tary operator Up(x) be obtained from a straightforward
integral (as was done for Eq. (7) in Ref. [1]). To get the
correct solution we will take the disentangling technique
for matrices proposed by Fisher, Nieto and Sandberg [2],
and Gilmore [3] here. Using the realization of the Pauli
matrices of the SU(2) Lie algebra

Kp+ =

(
0 1

0 0

)
, Kp− =

(
0 0

1 0

)
, Kp0 =

( 1
2 0

0 − 1
2

)
, (7)

equation (3) then can be represented by

∂Up

∂x
U†p =

(
κ∗p ζ∗p
−ζp κp

)
=

(
µpµ̇

∗
p + ν∗p ν̇p µ∗pν̇p − νpµ̇

∗
p

−µpν̇∗p + ν∗p µ̇p µ∗pµ̇p + νpν̇
∗
p

)
=(

µ̇∗p ν̇p
−ν̇∗p µ̇p

)(
µp −νp
ν∗p µ∗p

)
, (8)

where the dot denotes the differentiation with respect to
x. From equation (8) it is evident that

Up(x) =

(
µ∗p νp

−ν∗p µp

)
=

(
1
νp
µp

0 1

)(
1
µp

0

0 µp

)(
1 0

−
ν∗p
µp

1

)
=

exp

[
νp

µp
Kp+

]
exp[−2 lnµpKp0] exp

[
−
ν∗p
µp
Kp−

]
, (9)
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which is the normal-order form of Up(x). Another expres-
sion of Up(x) represented as a single exponential including
Kpj(j = +,−, 0) can be formally written as

Up(x) = exp[cp+(x)Kp+ + cp−(x)Kp− + cp0(x)Kp0],
(10)

where cpj(x) are scalar functions of x to be determined.
Inserting equation (7) into expression (10) we obtain

Up(x) = exp

( cp0

2 cp+

cp− −
cp0

2

)
=
∑
n

1

(2n)!

( cp0

2 cp+

cp− −
cp0

2

)n

+
∑
n

1

(n+ 1)!

( cp0

2 cp+

cp− −
cp0

2

)(n+1)

=

(
coshΘp +

cp0

2Θp
sinhΘp

cp+

Θp
sinhΘp

cp−
Θp

sinhΘp coshΘp −
cp0

2Θp
sinhΘp

)
, (11)

where Θp =
[( cp0

2

)2
+ cp+cp−

]1/2
. Comparison of equa-

tions (11) with (9) yields

µp = coshΘp −
cp0

2Θp
sinhΘp,

νp =
cp+

Θp
sinhΘp, (12)

and cp− = −c∗p+, cp0 = −c∗p0. In order to solve cpj as func-
tions of µp and νj ,or equivalently κp and ζp, substituting
equation (12) into equation (4), after some manipulations
we obtain a set of differential equations

c∗p+Θ̇p

Θp
+

(
c∗p+ċp0 − cp0ċ

∗
p+

2Θp

)
× sinh2Θp +

˙(
c∗p+
2Θp

)
sinh 2Θp = ζp,

−
cp0Θ̇p

2Θp
−

˙(
cp0

4Θp

)
sinh 2Θp = κp. (13)

It is easy to see that one particular solution to equation
(13) is

c+(x) = |c+(x)|eiχ,

c−(x) = −|c+(x)|e−iχ,

c0(x) = i|c0(x)|, (14)

where χ does not independ on x and |cp+(x)| = k|cp0(x)|,
k is a real constant. Then

µp(x) = cosΞp(x) −
1

(k2 + 1
4 )1/2

sinΞp(x),

νp(x) =
keiχ

(k2 + 1
4 )1/2

sinΞp(x), (15)

Up(x) = exp


x∫

x0

ζ∗p (x′)dx′Kp+

−

x∫
x0

ζp(x
′)dx′Kp− − 2

x∫
x0

κp(x
′)dx′Kp0

 , (16)

where Ξp = (k2 + 1
4 )1/2

∣∣∣∣∣−2
x∫
x0

κp(x
′)dx′

∣∣∣∣∣.
Another particular solution can be found to be

cp+(x) = |cp+(x)|eiχ, cp0(x) = 0, (17)

where χ is also independent of x.Then

µp(x) = cos

∣∣∣∣∣∣
x∫

x0

ζ∗p (x′)dx′

∣∣∣∣∣∣ ,
νp(x) = eiχ sin

∣∣∣∣∣∣
x∫

x0

ζ∗p (x′)dx′

∣∣∣∣∣∣ , (18)

Up(x) = exp


x∫

x0

ζ∗p (x′)dx′Kp+−

x∫
x0

ζp(x
′)dx′Kp−

.(19)

It should be noted that although equation (3) also ad-
mits the solution of the type (16), whose form is the same
as equation (8) in reference [1] which is free from any
constraint, the functions cpj(x) must obey the restricted
condition (14) and additional demands. While equations
(22) and (21) in reference [1] are just the proper cases of
the equations (18) and (19) with χ = 0, x = t, and x0 = 0.

Finally we wish to point out that equation (3) appears
to be a time-evolution equation in quantum mechanics
[4], the solution of this type of operator differential equa-
tions had been widely studied [5–9]. The present paper
provides an interesting instance for getting the correct
solution with the matrix derivation. However, some care-
lessness still happened occasionally. For instance, equation
(1-133) of reference [10] represents an evolution equation
of a one-dimensional linear harmonic oscillator with mass
m = 1 and an electric charge e that is interacting with an
external homogeneous constant electric field E ,

1

i

∂U

∂t
− eE

(
q cosωt+

p

ω
sinωt

)
U = 0, (20)

where q and p are the time-independent canonical
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operators, respectively. According to Magnus [5], if cer-
tain unspecified conditions of convergence are satisfied,
U(t) can be written in the form

U(t) = exp Ω(t), (21)

where Ω(t) is an infinite series

Ω(t) =

∫ t

0

A(τ)dτ +
1

2

∫ t

0

[
A(τ),

∫ τ

0

A(σ)dσ

]
dτ

+
1

4

∫ t

0

[
A(τ),

∫ τ

0

[
A(σ),

∫ σ

0

A(ρ)dρ

]
dσ

]
dτ

+
1

12

∫ t

0

[[
A(τ),

∫ τ

0

A(σ)dσ

] ∫ τ

0

A(σ)dσ

]
dτ + · · · ,(22)

with

A(t) = ieE
(
q cosωt+

p

ω
sinωt

)
. (23)

As it happens that the following commutation relation is
identically satisfied for all values of t ,A(t),

t∫
0

A(τ)dτ

 = 0, (24)

U(t) then becomes simply

U(t) =

∫ t

0

A(τ)dτ =

exp
[
ieE
( q
ω

sinωt−
p

ω2
cosωt+

p

ω2

)]
, (25)

which is just the formal solution given in reference [10]
(Eq. (1–134) in Ref. [10]). However, using [q, p] = i, equa-
tion (24) will lead to cosωt = 1, which remains true only
for the trivial case of t = 0. Hence, equation (25) is not
a correct expression of the solution to equation (20). On
the contrary, it is easily verified that the two particular
solutions (16) and (19) to our formalism will identically
satisfy the similar relation (24) provided A(t) is replaced
by the right-hand side of equation (3).
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